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If G is a finitely generated powerful pro-p group satisfying a certain law v == 1, 
and if G can be generated by a normal subset T of finite width which satisfies 
a positive law, we prove that G is nilpotent. Furthermore, the nilpotency class 
of G can be bounded in terms of the prime p, the number of generators of G, 
the law v == 1, the width of T, and the degree of the positive law. The main 
interest of this result is the application to verbal subgroups: if G is a p-adic 
analytic pro-p group in which all values of a word w satisfy positive law, and 
if the verbal subgroup w(G) is powerful, then w(G) is nilpotent. 
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1. Introduction 

If 0: and f3 are two group words, we say that a group G satisfies the law 
0: == f3 if every substitution of elements of G by the variables gives the same 
value for 0: and for f3. If the words 0: and f3 are positive, i.e. if they do not 
involve any inverses of the variables, then we say that 0: == f3 is a positive 
law. We can similarly speak about a law holding on a subset T of G, if we 
only substitute elements of T by the variables. Groups satisfying a positive 
law have received special attention in the past decade. The main result is 
due to Burns and Medvedev, who proved in Ref. 2 that a locally graded 
group G satisfies a positive law if and only if Gis nilpotent-by-(locally finite 
of finite exponent). This applies in particular to residually finite groups. 
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A similar kind of problem has been considered by Shumyatsky and the 
second author in Ref. 5. If G is a finitely generated group and T is a set of 
generators satisfying a positive law, they ask whether the whole of G will 
also satisfy a (possibly different) positive law, provided that T is sufficiently 
large in some sense. In this direction, they obtain a positive answer if T is a 
normal subset of G which is closed under taking commutators of its elements 
(commutator-closed for short), under the assumption that G satisfies an 
arbitrary law and is residually-p for some prime p. More precisely, the result 
is proved for all primes outside a finite set P( n) depending only on the degree 
n of the law (that is, the maximum of the lengths of a and 13). 

The result in the previous paragraph can be applied to verbal subgroups 
w(G) in a group G, where T is considered to be the set Gw of all values of 
the word w in G. Note that Gw is always a normal subset. Among other 
results, Shumyatsky and the second author prove that, if G is a p-adic 
analytic pro-p group and p (j. P(n) then, for every word w such that Gw 

is commutator-closed, a positive law on Gw implies a positive law on the 
whole of w(G) . Now two questions naturally arise: (i) can we get rid of 
the restriction p (j. P(n)?; (ii) can we get rid of the condition that Gw 

should be commutator-closed? If we can give a positive answer to both 
these questions , then the result will hold in p-adic analytic pro-p groups for 
all primes and for all words. 

If G is a p-adic analytic pro-p group, Jaikin-Zapirain has proved (see 
Theorem 1.3 of Ref. 7) that the set Gw has finite width for every word w, 
and then, by Proposition 4.1.2 of Ref. 9, the verbal subgroup w(G) is closed 
in G. (See Section 2 for the definition of width.) Thus w(G) is again ap-adic 
analytic pro-p group and, according to Interlude A of Ref. 3, it contains a 
powerful subgroup of finite index. One of the main results of this paper is 
the solution of the problem raised in the last paragraph in the case when 
w( G) itself is powerful. 

Theorem 1.1. Let G be a p-adic analytic pro-p group, and let w be any 
word. If all values of w in G satisfy a positive law and the verbal subgroup 
w( G) is powerful, then w( G) is nilpotent. 

Observe that the conclusion in the previous theorem that w(G) is nilpo
tent is actually stronger than w(G) satisfying a positive law. 

Following the approach of Ref. 5, we obtain Theorem 1.1 from a more 
general result not involving directly word values. In this case, we work 
with G a finitely generated powerful pro-p group for an arbitrary prime p, 
and the set of generators T has to be normal and of finite width, but not 
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necessarily commutator-closed. Recall that, as mentioned above, if G is a

p-adic analytic pro-p group, then Gw has finite width for every word w.

Theorem 1.2. Let G be a powerful d-generator pro-p group which satisfies

a certain law v ≡ 1. Suppose that G can be generated by a normal subset T

of width m that satisfies a positive law of degree n. Then G is nilpotent of

bounded class.

Here, and in the remainder of the paper, when we say that a certain

invariant of a group is bounded, we mean that it is bounded above by a

function of the parameters appearing in the statement of the corresponding

result. Thus, in Theorem 1.2, the nilpotency class of G is bounded in terms

of the prime p, the number d of generators of G, the law v ≡ 1, the width

m of T , and the degree n of the positive law. If we want to make explicit

the set S of parameters in terms of which a certain quantity is bounded,

then we will use the expression ‘S-bounded’.

We want to remark that, contrary to what happens in Theorem 1.2, we

cannot guarantee that the nilpotency class of w(G) is bounded in Theorem

1.1. The reason is that we are using the above-mentioned result of Jaikin-

Zapirain, which provides the finite width of Gw, but not bounded width for

that set.

2. The action on abelian normal sections

Our first step is to translate the positive law on the normal generating set

T into a condition about the action of the elements of T on the abelian

normal sections of G. More precisely, we have the following consequence of

Lemma 2.1 in Ref. 5. (Let f(X) be the product of the polynomials f1(X)

and f−1(X) in the statement of that lemma.)

Lemma 2.1. Let T be a normal subset of a group G, and assume that T

satisfies a positive law of degree n. Then there exists a monic polynomial

f(X) ∈ Z[X] of degree 2n, depending only on the given positive law, which

satisfies the following property: if A is an abelian normal section of G, then

f(t), viewed as an endomorphism of A, is trivial for every t ∈ T ∪ T−1.

If T is a subset of a group G, we say that T has finite width if there

exists a positive integer m such that every element of the subgroup 〈T 〉 can
be expressed as a product of no more than m elements of T ∪ T−1. The

smallest possible value of m is then called the width of T .

In our next theorem, we show how some properties of the generating

set T of G are hereditary for the natural generating set of γk(G) which can

3
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be constructed from T . For simplicity, if A = K/L is a normal section of a

group G, we say that two elements g, h ∈ G commute modulo A if gL and

hL commute modulo A (or, equivalently, if g and h commute modulo K).

Theorem 2.1. Let G be a d-generator finite p-group, and let T be a normal

generating set of G. Then

Tk = {[t1, . . . , tk] | ti ∈ T}

is a normal generating set of γk(G), and furthermore:

(i) If T has finite width m, then the width of Tk is at most mdk−1.

(ii) If T satisfies a positive law of degree n, then there exists a monic poly-

nomial h(X) ∈ Z[X] of n-bounded degree such that h(tk) annihilates

γk+1(G)/γk+1(G)′ for every tk ∈ Tk ∪ T−1
k .

Proof. Of course, Tk is a normal subset of G, and the proof that Tk gen-

erates γk(G) is routine.

(i) We argue by induction on k. The result is obvious for k = 1, so we

assume next that k ≥ 2. By the Burnside Basis Theorem, we can choose

t1, . . . , td ∈ T such that G = 〈t1, . . . , td〉. If y is an arbitrary element of

γk(G), we can write

y = [g1, t1] . . . [gd, td], for some gi ∈ γk−1(G), (1)

by using Proposition 1.2.7 of Ref. 9. Now, if g is an arbitrary element of

γk−1(G), then by the induction hypothesis, we have g = u1 . . . us for some

ui ∈ Tk−1 ∪ T−1
k−1, where s ≤ mdk−2. Then, for every t ∈ T , we have

[g, t] = [u1, t]
u2...us . . . [us−1, t]

us [us, t].

If ui ∈ Tk−1, then [ui, t] ∈ Tk; on the other hand, if ui ∈ T−1
k−1 then

[ui, t] =
(
[u−1

i , t]ui
)−1

is an element of T−1
k . Thus [g, t] is a product of at most s elements of

Tk ∪ T−1
k , and it follows from (1) that y is a product of no more than ds

elements of Tk ∪ T−1
k . This completes the proof of (i).

(ii) Set A = γk+1(G)/γk+1(G)′. By Lemma 2.1, there exists a monic

polynomial f(X) ∈ Z[X] of degree 2n such that f(t) annihilates A for

every t ∈ T ∪ T−1.

Let I be the ideal of Z[X1, X2] generated by f(X1) and f(X2). Since f is

monic, the quotient ring R = Z[X1, X2]/I is a finitely generated Z-module,

generated by the images of the monomials Xi
1X

j
2 with 0 ≤ i, j ≤ 2n−1. By

4
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Theorem 5.3 in Chapter VIII of Ref. 6, R is integral over Z. In particular,

there exists a monic polynomial h(X) ∈ Z[X] such that h(X1X2) ∈ I. Also,

by examining the proof of that result in Ref. 6, it is clear that the degree

of h(X) is at most (2n)2.

Now, let [u, t] be an arbitrary element of Tk, where u ∈ Tk−1 and t ∈ T .

Since (tu)−1 and t commute modulo A, these elements define commuting

endomorphisms of A, and hence we can define a ring homomorphism

ϕ : Z[X1, X2] −→ End (A)

X1 
−→ (tu)−1

X2 
−→ t.

Since f((tu)−1) and f(t) are both the null endomorphism of A, it follows

that f(X1) and f(X2) are contained in the kernel of ϕ, and so the same

holds for the ideal I. Hence h(X1X2) ∈ kerϕ, which means that h([u, t]) is

the null endomorphism of A.

We can similarly prove that h([t, u]) = 0 in End (A), by defining ψ :

Z[X1, X2] −→ End (A) via the assignments X1 
→ t−1 and X2 
→ tu. Thus

h(tk) annihilates A for every tk ∈ Tk ∪ T−1
k .

Finally, for a certain k, we are able to get an Engel action of all k-th

powers of the elements of G on some abelian normal sections of G.

Theorem 2.2. Let G be a finite p-group generated by a normal subset T

which has width m. Suppose that A is an abelian normal section of G such

that the elements of T commute pairwise modulo A, and that for some

monic polynomial f(X) ∈ Z[X], f(t) annihilates A for all t ∈ T ∪ T−1.

Then:

(i) There exists an {m, f}-bounded integer r such that [A,r g] ≤ Ap for

every g ∈ G.

(ii) There exist {m, f}-bounded integers n and k such that [A,n g
k] = 1 for

every g ∈ G.

Proof. The first part of the proof is similar to the proof of (ii) in the

last theorem. Let us write n for the degree of f(X). Consider the quo-

tient ring R = Z[X1, . . . , Xm]/I, where I is the ideal generated by the

polynomials f(X1), . . . , f(Xm). Then R is integral over Z, and there ex-

ists a monic polynomial h(X) ∈ Z[X] of degree at most nm such that

h(X1 . . . Xm) ∈ I. Now let g be an arbitrary element of G. Since T gener-

ates G and has width m, we can write g = t1 . . . tm for some ti ∈ T ∪ T−1.

The map X1 
→ t1, . . . , Xm 
→ tm extends to a ring homomorphism
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ϕ : Z[X1, . . . , Xm] −→ End (A), since the elements of T commute pair-

wise modulo A. Since f(t1) = · · · = f(tm) = 0, it follows that I ⊆ kerϕ.

Consequently, h(g) = h(t1 . . . tm) = ϕ(h(X1 . . . Xm)) = 0. Thus we have

found a monic polynomial h(X) ∈ Z[X] such that h(g) annihilates A for all

g ∈ G. Note that the polynomial h(X) only depends on f(X) and m, but

not on the particular element g or on the section A.

(i) Since G is a finite p-group, we have [A,c G] = 1 for some c. Let

(X−1)r be the greatest common divisor of (X−1)c and h(X), when these

polynomials are considered in Fp[X]. Since r ≤ deg h, it follows that r is

{m, f}-bounded. By Bézout’s identity, we can write

(X − 1)r = p(X)(X − 1)c + q(X)h(X),

for some p(X), q(X) ∈ Fp[X]. If we consider an element g ∈ G, and sub-

stitute g for X in the previous expression, then, as endomorphisms of the

Fp-vector space A/Ap, we get (g − 1)r = 0. This means that [A,r g] ≤ Ap,

as desired.

(ii) Let J be the ideal of Z[X] generated by all polynomials h(Xi) with

i ≥ 1. Then, if j(X) ∈ J , it follows that j(g) = 0 for every g ∈ G. By

Lemma 3.3 of Ref. 10, there exist positive integers q, k and � such that

qX�(Xk − 1)� ∈ J,

where q, k, � depend only on h(X), so only on f(X) and m. Then

Aqg�(gk−1)� = 1, for every g ∈ G.

If ps is the largest power of p which divides q, then Aq = Aps

, since A

is a finite p-group. Also, we have Ag = A. Hence

Aps(gk−1)� = 1

or, what is the same,

[Aps

, gk, �. . ., gk] = 1 (2)

for every g ∈ G.

Now, it follows from part (i) that

[Api

,r g] ≤ Api+1

, for every i ≥ 0, and for every g ∈ G.

This, together with (2), shows that

[A,n g
k] = 1, for all g ∈ G,

where n = sr + �.

6
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3. Proof of the Main Theorems

We will begin by proving Theorem 1.2. In order to show that the powerful

pro-p group G is nilpotent, we will rely on the following two lemmas. The

first one is a classical result of Philip Hall (see, for example, Theorem 3.26

of Ref. 8), and the other one says that for a finitely generated powerful

pro-p group ‘nilpotent-by-finite’ is the same as ‘nilpotent’.

Lemma 3.1. Let G be a group, and let N be a normal subgroup of G. If N

is nilpotent of class k and G/N ′ is nilpotent of class c, then G is nilpotent

of {k, c}-bounded class.

Lemma 3.2. Let G be a finitely generated powerful pro-p group. If G has

a normal subgroup N of finite index which is nilpotent of class c, then G

itself is nilpotent of {c, e}-bounded class, where e is the exponent of G/N .

Proof. We prove the result for p > 2. For p = 2, the same proof applies

with some little changes.

It follows from the hypotheses that Ge is nilpotent of class at most c.

By Proposition 3.2 and Corollary 3.5 in Ref. 4, we get

[Gec+1

, G, c. . ., G] = [G, c+1. . . , G]e
c+1

= [Ge, c+1. . . , Ge] = 1. (3)

On the other hand, since G is powerful, we have γi+1(G) ≤ Gpi

for all i ≥ 1.

As a consequence, for some {c, e}-bounded integer k we have γk+1(G) ≤
Gec+1

. This, together with (3), shows that G is nilpotent of class at most

k + c, and we are done.

Note that we could have written the previous lemma under the appar-

ently weaker assumption that the exponent of G/N is finite, rather than

N being of finite index in G. However, if G is a finitely generated pow-

erful pro-p group, these two conditions are equivalent: if expG/N = pk,

then Gpk

is contained in N , and then by Theorem 3.6 of Ref. 3, we have

|G : N | ≤ |G : Gpk | ≤ pkd, where d is the minimum number of generators

of G as a topological group. (In fact, the assumption that G should be

powerful is not necessary for this equivalence, since |G : Gpk | is finite for

every finitely generated pro-p group. But this is a much deeper result, which

needs Zelmanov’s positive solution of the Restricted Burnside Problem.)

We also need the following result of Black (see Corollary 2 in Ref. 1).

Theorem 3.1. Let G be a finite group of rank r satisfying a law v ≡ 1.

Then, there exists an {r, v}-bounded number k such that γk((G
k!)′) = 1. In

particular, if G is soluble, then the derived length of G is {r, v}-bounded.

7
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Note that the positive solution to the Restricted Burnside Problem is

needed for the conclusion in the soluble case: thus we know that the quotient

G/Gk! has bounded order, and so also bounded derived length.

We can now proceed to the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that the result is known for G a finite

p-group, so that all finite p-groups satisfying the conditions of the theorem

have nilpotency class at most c, for some bounded number c. Now if G is

a pro-p group as in the statement of the theorem, and N is an arbitrary

open normal subgroup of G, it follows that γc+1(G) ≤ N . Thus necessarily

γc+1(G) = 1 and the result is valid also for pro-p groups.

Hence we may assume that G is a d-generator finite powerful p-group.

By Theorem 11.18 of Ref. 8, it follows that G has rank d, i.e. that every

subgroup of G can be generated by d elements. Since G satisfies the law

v ≡ 1, by Theorem 3.1 we have G(s) = 1 for some bounded number s. We

argue by induction on s.

If s ≤ 2, i.e. if G is metabelian, then the elements of T commute pair-

wise modulo G′. Choose generators g1, . . . , gd of G. By Lemma 2.1 and

Theorem 2.2, since T satisfies a positive law, we know that there exist

bounded numbers n and k such that [G′,n g
k
i ] = 1 for all i = 1, . . . , d. As a

consequence, the subgroups 〈gki , G′〉 have bounded nilpotency class. Thus

GkG′ = 〈gk1 , . . . , gkd , G′〉 is the product of d normal subgroups of bounded

class, and so has bounded class itself. Since |G : GkG′| ≤ kd, it follows from

Lemma 3.2 that G has bounded nilpotency class. This concludes the proof

in the metabelian case.

Assume now that s ≥ 3. We claim that the nilpotency class of

G/γk+1(G)′ is bounded for all k ≥ 1 (here, we must also take k into ac-

count for the bound). The result is true for k = 1, according to the last

paragraph. Now we argue by induction on k. By Theorem 2.1, Tk is a nor-

mal set of generators of γk(G) of bounded width. Also, the elements of

Tk commute pairwise modulo γk+1(G). On the other hand, by (ii) of The-

orem 2.1, there exists a monic polynomial h(X) ∈ Z[X] such that h(tk)

annihilates the abelian normal section A = γk+1(G)/γk+1(G)′ for every

tk ∈ Tk. Thus we may argue as in the metabelian case above with the

group Q = γk(G)/γk+1(G)′ and deduce that Q has bounded nilpotency

class. Since G/γk(G)′ has also bounded class by the induction hypothesis,

the claim follows from Lemma 3.1.

Now that the claim is proved, the result easily follows. Indeed, since

G/G(s−1) has bounded class by induction, there exists a bounded integer �

8
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such that γ�+1(G) ≤ G(s−1). Hence γ�+1(G)′ = 1, and G has bounded class

by the previous claim.

Now Theorem 1.1 follows readily from Theorem 1.2.

Proof of Theorem 1.1. As already mentioned, the set Gw of all values

of w in G is a normal subset of G, and in particular of w(G). Also, by

Theorem 1.3 of Ref. 7, Gw has finite width, say m.

Let α ≡ β be the positive law satisfied by the set Gw, and suppose that

the number of variables used in the law α ≡ β and in the word w is k and �,

respectively. Now, consider kl arbitrary elements g1, . . . , gkl of G. Since the

k elements w(g1, . . . , g�), . . . , w(g(k−1)�+1, . . . , gk�) satisfy the law α ≡ β, it

follows that

α(w(g1, . . . , g�), . . . , w(g(k−1)�+1, . . . , gk�)) =

β(w(g1, . . . , g�), . . . , w(g(k−1)�+1, . . . , gk�)).

This means that the group G satisfies a law v ≡ 1, where v is a word which

depends only on w and on the positive law α ≡ β. In particular, the law

v ≡ 1 is also satisfied by w(G).

Now, we can apply directly Theorem 1.2 to the group w(G) and the

generating set Gw, in order to conclude that w(G) is nilpotent.
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