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Let m be a positive integer and A an elementary abelian group
of order qr with r � 2 acting on a finite q′-group G . We show
that if for some integer d such that 2d � r − 1 the dth derived
group of CG (a) has exponent dividing m for any a ∈ A#, then G(d)

has {m,q, r}-bounded exponent and if γr−1(CG (a)) has exponent
dividing m for any a ∈ A#, then γr−1(G) has {m,q, r}-bounded
exponent.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let A be a finite group acting coprimely on a finite group G . It is well known that the structure of
the centralizer CG (A) (the fixed-point subgroup) of A has strong influence over the structure of G . To
exemplify this we mention the following results.

The celebrated theorem of Thompson [18] says that if A is of prime order and CG (A) = 1, then G is
nilpotent. On the other hand, any nilpotent group admitting a fixed-point-free automorphism of prime
order q has nilpotency class bounded by some function h(q) depending on q alone. This result is due
to Higman [6]. The reader can find in [8] and [9] an account on the more recent developments related
to these results. The next result is a consequence of the classification of finite simple groups [21]: If A
is a group of automorphisms of G whose order is coprime to that of G and CG(A) is nilpotent or has
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odd order, then G is soluble. Once the group G is known to be soluble, there is a wealth of results
bounding the Fitting height of G in terms of the order of A and the Fitting height of CG(A). This
direction of research was started by Thompson in [19]. The proofs mostly use representation theory
in the spirit of the Hall–Higman work [5]. A general discussion of these methods and their use in
numerous fixed-point theorems can be found in Turull [20].

Following the solution of the restricted Burnside problem it was discovered that the exponent
of CG(A) may have strong impact over the exponent of G . Remind that a group G is said to have
exponent m if xm = 1 for every x ∈ G and m is the minimal positive integer with this property. The
next theorem was obtained in [10].

Theorem 1.1. Let q be a prime, m a positive integer and A an elementary abelian group of order q2 . Suppose
that A acts as a coprime group of automorphisms on a finite group G and assume that CG(a) has exponent
dividing m for each a ∈ A# . Then the exponent of G is {m,q}-bounded.

Here and throughout the paper A# denotes the set of nontrivial elements of A. The proof of
the above result involves a number of deep ideas. In particular, Zelmanov’s techniques that led to
the solution of the restricted Burnside problem [24] are combined with the Lubotzky–Mann theory
of powerful p-groups [13], Lazard’s criterion for a pro-p group to be p-adic analytic [11], and a
theorem of Bakhturin and Zaicev on Lie algebras admitting a group of automorphisms whose fixed-
point subalgebra is PI [1].

Another quantitative result of similar nature was proved in the paper of Guralnick and the second
author [4].

Theorem 1.2. Let q be a prime, m a positive integer. Let G be a finite q′-group acted on by an elementary
abelian group A of order q3 . Assume that CG(a) has derived group of exponent dividing m for each a ∈ A# .
Then the exponent of G ′ is {m,q}-bounded.

Note that the assumption that |A| = q3 is essential here and the theorem fails if |A| = q2. The
proof of Theorem 1.2 depends on the classification of finite simple groups.

It was natural to expect that Theorems 1.1 and 1.2 admit a common generalization that would
show that both theorems are part of a more general phenomenon. Let us denote by γi(H) the ith
term of the lower central series of a group H and by H (i) the ith term of the derived series of H . The
following conjecture was made in [17].

Conjecture 1.3. Let q be a prime, m a positive integer and A an elementary abelian group of order qr with
r � 2 acting on a finite q′-group G.

(1) If γr−1(CG (a)) has exponent dividing m for any a ∈ A# , then γr−1(G) has {m,q, r}-bounded exponent;
(2) If, for some integer d such that 2d � r − 1, the dth derived group of CG(a) has exponent dividing m for any

a ∈ A# , then the dth derived group G(d) has {m,q, r}-bounded exponent.

The main purpose of the present paper is to confirm Conjecture 1.3. Theorem 6.1 and Theorem 7.4
show that both parts of the conjecture are correct. The main novelty of the paper is the introduction
of the concept of A-special subgroups of G (see Section 3). Using the classification of finite simple
groups it is shown in Section 4 that the A-invariant Sylow p-subgroups of G(d) are generated by their
intersections with A-special subgroups of degree d. This enables us to reduce the proof of Conjec-
ture 1.3 to the case where G is a p-group, which can be treated via Lie methods. The idea of this kind
of reduction has been anticipated already in [4]. In Section 6 we give a detailed proof of part (2) of
Conjecture 1.3. In Section 7 we briefly describe how the developed techniques can be used to prove
part (1) of Conjecture 1.3.

Throughout the article we use the term “{a,b, c, . . .}-bounded” to mean “bounded from above by
some function depending only on the parameters a,b, c, . . .”.
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2. Preliminary results

We start with the following elementary lemma.

Lemma 2.1. Suppose that a nilpotent group G is generated by subgroups G1, . . . , Gt such that γi(G) =
〈γi(G) ∩ G j | 1 � j � t〉 for all i � 1. Then G = G1G2 · · · Gt .

Proof. We argue by induction on the nilpotency class c of G . If c = 1, then G is abelian and the
result is clear. Assume that c � 2. Let K = γc(G). Since K is central, it is abelian and we have K =
K1 K2 · · · Kt , where K j = K ∩ G j for j = 1, . . . , t . By induction we have

G = G1G2 · · · Gt K = G1G2 · · · Gt K1 K2 · · · Kt .

Since each subgroup K j is central in G and K j � G j , it follows that G = G1G2 · · · Gt , as required. �
We now collect some facts about coprime automorphisms of finite groups. The two following

lemmas are well known (see [3, 5.3.16, 6.2.2, 6.2.4]).

Lemma 2.2. Let A be a group of automorphisms of the finite group G with (|A|, |G|) = 1.

(1) If N is an A-invariant normal subgroup of G, then CG/N (A) = CG(A)N/N;
(2) If H is any A-invariant p-subgroup of G, then H is contained in an A-invariant Sylow p-subgroup of G.

Lemma 2.3. Let q be a prime, G a finite q′-group acted on by an elementary abelian q-group A of rank at
least 2. Let A1, . . . , As be the maximal subgroups of A. If H is an A-invariant subgroup of G we have H =
〈C H (A1), . . . , C H (As)〉. Furthermore if H is nilpotent then H = ∏

i C H (Ai).

We also need the following result, which is a well-known corollary of the classification of finite
simple groups.

Lemma 2.4. Let G be a finite simple group and A a group of automorphisms of G with (|A|, |G|) = 1. Then A
is cyclic.

We conclude this section by citing an important theorem due to Gaschütz. The proof can be found
in [7, p. 121] or in [14, p. 191].

Theorem 2.5. Let N be a normal abelian p-subgroup of a finite group G and let P be a Sylow p-subgroup of G.
Then N has a complement in G if and only if N has a complement in P .

3. A-special subgroups

In this section we introduce the concept of A-special subgroups of G . For every integer k � 0 we
define A-special subgroups of G of degree k in the following way.

Definition 3.1. Let q be a prime and A an elementary abelian q-group acting on a finite q′-group G .
Let A1, . . . , As be the subgroups of index q in A and H a subgroup of G .

• We say that H is an A-special subgroup of G of degree 0 if and only if H = CG(Ai) for suitable
i � s.

• Suppose that k � 1 and the A-special subgroups of G of degree k − 1 are defined. Then H is an
A-special subgroup of G of degree k if and only if there exist A-special subgroups J1, J2 of G of
degree k − 1 such that H = [ J1, J2] ∩ CG(A j) for suitable j � s.
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Here as usual [ J1, J2] denotes the subgroup generated by all commutators [x, y] where x ∈ J1 and
y ∈ J2. We note that all A-special subgroups of G of any degree are A-invariant. Assume that A has
order qr . It is clear that for a given integer k the number of A-special subgroups of G of degree k is
{q, r,k}-bounded. Let us denote this number by sk .

The A-special subgroups have certain properties that will be crucial for the proof of the main
result of this paper.

Proposition 3.2. Let A be an elementary abelian q-group of order qr with r � 2 acting on a finite q′-group G
and let A1, . . . , As be the maximal subgroups of A. Let k � 0 be an integer.

(1) If k � 1, then every A-special subgroup of G of degree k is contained in some A-special subgroup of G of
degree k − 1.

(2) Let K be an A-invariant subgroup of G and let K1, . . . , Kt be all the subgroups of the form K ∩ H, where H
is some A-special subgroup of G of degree k. Let L1, . . . , Lu be all the subgroups of the form K ′ ∩ J where
J is some A-special subgroup of G of degree k + 1. If K = 〈K1, . . . , Kt〉, then K ′ = 〈L1, . . . , Lu〉.

(3) Let Rk be the subgroup generated by all A-special subgroups of G of degree k. Then Rk = G(k) .
(4) If 2k � r − 1 and H is an A-special subgroup of G of degree k, then H is contained in the kth derived group

of CG(B) for some subgroup B � A such that |A/B| � q2k
.

(5) Suppose that G = G ′ and let N be an A-invariant subgroup such that N = [N, G]. Then for every k � 0
the subgroup N is generated by subgroups of the form N ∩ H, where H is some A-special subgroup of G
of degree k.

(6) Let H be an A-special subgroup of G. If N is an A-invariant normal subgroup of G, then the image of H in
G/N is an A-special subgroup of G/N.

Proof. (1) If k = 1 and H is an A-special subgroup of G of degree 1, then H = [ J1, J2] ∩ CG(A j) for a
suitable j � s. Observe that H � CG(A j) and the centralizer CG(A j) is an A-special subgroup of G of
degree 0. Assume that k � 2 and use induction on k. Let H be an A-special subgroup of degree k. We
know that there exist A-special subgroups J1, J2 of G of degree k − 1 such that H = [ J1, J2]∩ CG (A j)

for suitable j � s. By induction J i is contained in some A-special subgroup Li of G of degree k − 2.
Observe that [L1, L2]∩CG(A j) is an A-special subgroup of G of degree k−1 and H � [L1, L2]∩CG(A j),
so the result follows.

(2) Set M = 〈[Ki, K j] | 1 � i, j � t〉. It is clear that each of the subgroups [Ki, K j] is A-invariant.
Thus, by Lemma 2.3 each subgroup [Ki, K j] is generated by subgroups of the form [Ki, K j] ∩ CG(Al),
where l = 1, . . . , s. Note that each subgroup [Ki, K j] ∩ CG(Al) is contained in an A-special subgroup
of G of degree k + 1. Hence M is generated by subgroups of the form M ∩ D , where D ranges through
the set of all A-special subgroups of G of degree k + 1. If M∗ = M ∩ D∗ is such a subgroup we
claim that [M∗, K j] � M for every 1 � j � t . Indeed, by (1) we know that there exists some A-special
subgroup H of G of degree k such that D∗ � H . This implies that M∗ is contained in some Kl and
so we have [M∗, K j] � [Kl, K j] � M , as desired. Therefore M is normal in K and we conclude that
M = K ′ . The result now follows.

(3) If k = 0 the result is immediate from Lemma 2.3. Therefore we assume that k � 1 and set
N = Rk−1. By induction on k we assume that N = G(k−1) . Let D1, D2, . . . , Dsk−1 be the A-special
subgroups of G of degree k − 1 and H1, H2, . . . , Hsk be the A-special subgroups of G of degree k. It
follows from (2) that G(k) = 〈[Di, D j] | 1 � i, j � sk−1〉. Since each subgroup [Di, D j] is A-invariant,
it follows from Lemma 2.3 that it is generated by subgroups of the form [Di, D j] ∩ CG(Al), where
l = 1, . . . , s. These are precisely A-special subgroups of G of degree k so the result follows.

(4) If k = 0 this is clear because H = CG(Ai) for a suitable i � s and |A/Ai| = q. Assume that
k � 1 and use induction on k. We have H = [ J1, J2] ∩ CG (A j) for a suitable j � s and A-special
subgroups J1, J2 of G of degree k − 1. By induction there exist subgroups B1, B2 � A such that

|A/Bi | � q2k−1
and J i � CG(Bi)

(k−1) where i = 1,2. Set B = B1 ∩ B2. Observe that H � [ J1, J2] �
[CG(B1)

(k−1), CG(B2)
(k−1)] � [CG(B)(k−1), CG(B)(k−1)]. Thus H � CG (B)(k) and |A/B| � q2k

, as required.
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(5) For k = 0 this follows from Lemma 2.3. Assume that k � 1 and use induction on k. Let
N1, . . . , Nt be all the subgroups of the form N ∩ H where H is some A-special subgroup of degree k
and set M = 〈N1, . . . , Nt〉. We want to show that N = M .

Since G = G ′ by (3) G can be generated by all A-special subgroups of degree k, for any k � 1. Thus
G = 〈H1, . . . , Hsk 〉, where H j is A-special subgroup of degree k. Lemma 2.3 shows that for all i and j
the commutator [Ni, H j] is generated by subgroups of the form [Ni, H j] ∩ CG(Al), where l = 1, . . . , s.
Note that each subgroup [Ni, H j] ∩ CG(Al) is contained in N since N = [N, G] and on the other hand
it is also contained in some A-special subgroup of degree k, so [Ni, H j] ∩ CG(Al) � Nm for a suitable
m � t . This implies that M is normal in G .

Let now L1, . . . , Lu be all the subgroups of the form N ∩ K where K is some A-special subgroup of
degree k −1, so by induction we can assume that N = 〈L1, . . . , Lu〉. For all i and j, using the argument
as above, it is easy to show that [Li, H j] is generated by subgroups of the form [Li, H j] ∩ CG(Al),
where l = 1, . . . , s and that each such a subgroup is contained in some Nm , for a suitable m � t .

If M = 1, then, for all m � t , Nm = 1 and so [Li, H j] = 1 for all i and j. Hence N is central in G
but this is a contradiction because N = [N, G]. Assume now that M is a nontrivial subgroup strictly
contained in N . Since we have shown that M is normal we can pass to the quotient G/M . In the
quotient N/M is central so [N, G] � M but this contradicts the assumption that M < N . Thus we
conclude that M must be equal to N .

(6) This is immediate from Lemma 2.2(1) and the definitions. �
4. Some generation results

Throughout this section let q be a prime, G a finite q′-group and A an elementary abelian group
of order qr acting on G . We will show that if P is an A-invariant Sylow p-subgroup of G(d) , then it
can be generated by its intersections with A-special subgroups of G of degree d.

Theorem 4.1. Assume r � 2. Let P be an A-invariant Sylow p-subgroup of G(d) for some fixed integer d � 0.
Let P1, . . . , Pt be the subgroups of the form P ∩ H where H is some A-special subgroup of G of degree d. Then
P = 〈P1, . . . , Pt〉.

We first handle the case where G is a direct product of simple groups.

Lemma 4.2. Assume that r � 2 and G is a direct product of nonabelian simple groups. Let P be an A-invariant
Sylow p-subgroup of G, and for some fixed integer d � 0 let P1, . . . , Pt be all the subgroups of the form P ∩ H,
where H is some A-special subgroup of G of degree d. Then P = 〈P1, . . . , Pt〉.

Proof. Let G = S1 × · · · × Sm . By induction on the order of G we may assume that A permutes
transitively the simple factors S1, . . . , Sm .

We will now use induction on r to show that without loss of generality it can be assumed that A
acts on G faithfully. Suppose that some element a ∈ A# acts on G trivially. Thus, CG (a) = G .

Since G is a product of nonabelian simple groups it follows that [CG(a), CG (a)] = G and
[CG(a), CG (a)]∩ CG(a) = G . Thus if r = 2, then G itself is an A-special subgroup of degree 1. From this
it is easy to see that G is an A-special subgroup of degree d and the lemma follows immediately.

Suppose now that r � 3 and let A1, . . . , As be the maximal subgroups of A. Put A = A/〈a〉. If
A1, . . . At are the maximal subgroups of A containing a, then A1, . . . , At are maximal subgroups of A.
Then CG(Ai) = CG(Ai) for all i � s, and so we can consider A instead of A and use induction on r.

Thus, from now on we assume that A is faithful on G . Let B be the stabilizer of S1 in A. Then
by Lemma 2.4 B is cyclic. Remark that if b /∈ B , then CG (b) is a product of simple groups. Indeed if
we consider all the b-orbits, then it is not difficult to see that CG(b) is the product of the diagonal
subgroups of these b-orbits, i.e., CG (b) is a product of simple groups, one for each b-orbit.

Suppose that r = 2 and B �= 1. Let a be a nontrivial element of B and choose b ∈ A that permutes
S1, . . . , Sq . Observe that the case where A = B does not happen because of Lemma 2.4. Since b /∈ B
from the above remark we know that CG(b) = diag(S1 × · · · × Sq) is a diagonal subgroup of G . On the
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other hand it follows from the Thompson Theorem [18] that C S1 (a) �= 1 and this holds also for the
other factors S2, . . . , Sq because a normalizes each of the simple factors. Thus CG(a) = C S1 (a) × · · · ×
C Sq (a) and we have

[
CG(a), CG(b)

] = [
C S1(a),diag(S1 × · · · × Sq)

] × · · · × [
C Sq (a),diag(S1 × · · · × Sq)

]
. (4.1)

Furthermore observe that for any j = 1, . . . ,q

[
C S j (a),diag(S1 × · · · × Sq)

] = [
C S j (a), S j

] = S j, (4.2)

where the first equality follows from the fact that the simple factors commute each other and the
second one holds since [C S j (a), S j] is a nontrivial normal subgroup of S j . By (4.1) and (4.2) we see
that [CG(a), CG (b)] = S1 × · · · × Sq = G. Thus, for any c ∈ A#, CG(c) = [CG(a), CG (b)] ∩ CG(c) and so
the centralizer CG(c) is also an A-special subgroup of degree 1. We deduce that, for any a ∈ A#, the
centralizer CG(a) is an A-special subgroup of G of any degree. Since Lemma 2.3 tells us that P can be
generated by subgroups of the form P ∩ CG(Ai) where Ai are the maximal subgroups of A, the result
follows.

Next, assume that r = 2 and B = 1. Note that A permutes the factors S1, . . . , Sq2 and, for any

a ∈ A#, the centralizer CG(a) is a product of q simple groups, one for each a-orbit. Thus CG(a) is
perfect and, in particular, it is an A-special subgroup of any degree for all a ∈ A#. The lemma follows.

Finally assume that r � 3. Since B is cyclic we have |A : B| � q2. Hence we can choose a subgroup E
of type (q,q) that intersects B trivially. Note that for all a ∈ E#, the centralizer CG(a) is a product of
simple groups. Moreover Lemma 2.3 shows that P = ∏

a∈E# C P (a). Therefore it is sufficient to prove
that for each a ∈ E# the subgroup CG(a) ∩ P is generated by its intersections with all the A-special
subgroups of G of degree d.

Fix a in E#. Let D be the group of automorphisms induced on CG(a) by A. By induction CG(a) ∩ P
is generated by subgroups of the form (CG (a) ∩ P ) ∩ H , where H ranges through the set of D-special
subgroups of CG(a) of degree d. We now remark that any D-special subgroup of CG(a) of any degree
is in fact an A-special subgroup of G of the same degree. This follows form Definition 3.1 and from
the fact that if Ai is a maximal subgroup of A containing a, then there exists a maximal subgroup D j
of D such that CCG (a)(D j) = CG(Ai). Thus we can conclude that CG(a) ∩ P is generated by subgroups
of the form (CG (a)∩ P )∩ H , where now H can be regarded as an A-special subgroup of G of degree d.
The proof is now complete. �

We now are ready to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Let G be a counterexample of minimal order and let N be a minimal normal
A-invariant subgroup of G . Set X = 〈P1, . . . , Pt〉. By minimality and Proposition 3.2(6) P N = X N . To
prove that P = X it is sufficient to show that P ∩ N � X .

First suppose that N is a p′-group. In this case the intersection P ∩ N is trivial and there is nothing
to prove.

Next suppose that N is perfect. Since N is characteristically simple, N is a product of nonabelian
simple groups. It follows from Lemma 4.2 that P ∩ N is contained in X and we are done.

Thus, it remains to consider the case where N is a p-group. Suppose that G �= G ′ . By induction we
know that every A-invariant Sylow p-subgroup of G(d+1) is generated by its intersections with all the
A-special subgroups of G ′ of degree d. Therefore we can pass to the quotient G/G(d+1) and assume
that G(d+1) = 1. This implies that G(d) is abelian and so we may assume that G(d) is a p-group.
Then G(d) = P . It follows from Proposition 3.2(3) that P is generated by A-special subgroups of G of
degree d and the result holds.

We are reduced to the case that G = G ′ . Since N is minimal, either N = [N, G] or N � Z(G).
If N = [N, G] we note that P ∩ N = N because N is contained in P . Since N = [N, G], Proposi-

tion 3.2(5) shows that N is generated by its intersections with all the A-special subgroups of G of
degree d and so N � X , as desired.
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Now suppose N central in G . Then N is of order p and either N is contained in every maximal
subgroup of P or there exists a maximal subgroup S in P such that P = N S .

In the former case N � Φ(P ). Since we know that P = X N , it follows that P = X , as required.
In the latter case, by Theorem 2.5, N is also complemented in G and so G = N H for some subgroup

H � G . Since N is central, we have G = N × H . This yields a contradiction because we have assumed
that G = G ′ . �

We note some consequences of Theorem 4.1. These facts will be useful later on.

Lemma 4.3. Under the hypothesis of Theorem 4.1 let P (l) be the lth derived group of P . Then P (l) = 〈P (l) ∩ P j |
1 � j � t〉.

Proof. First we want to establish the following fact:

The group P (l) is generated by all the subgroups of the form P (l) ∩ D, where

D ranges through the set of all A-special subgroups of G of degree d + l. (4.3)

Indeed if l = 0 then (4.3) is exactly Theorem 4.1. Assume that l � 1 and use induction on l. Let
L1, . . . , Lu be all the subgroups of the form P (l) ∩ J , where J is some A-special subgroup of G of
degree d + l. By induction P (l−1) is generated by subgroups of the form P (l−1) ∩ D , where D is some
A-special subgroup of G of degree d + (l − 1). It now follows from Proposition 3.2(2) that P (l) =
〈L1, . . . , Lu〉 and this concludes the proof of (4.3).

Now for l = 0 the lemma is obvious since by Theorem 4.1 P = 〈P1, . . . , Pt〉, where each sub-
group P j is of the form P ∩ H for some A-special subgroup H of G of degree d. Assume that l � 1.
Proposition 3.2(1) tells us that every A-special subgroup D of degree d + l is contained in some
A-special subgroup H of degree d. Combined with (4.3) this implies that each subgroup of the form
P (l) ∩ D is contained in P j , for a suitable j � t . Thus P (l) = 〈P (l) ∩ P j | 1 � j � t〉, as required. �

Combining Theorem 4.1 with Lemma 2.1 we obtain a further refinement of Theorem 4.1.

Corollary 4.4. P = P1 P2 · · · Pt .

Proof. By Theorem 4.1 we have P = 〈P1, . . . , Pt〉. Since P is nilpotent, in view of Lemma 2.1 it is
sufficient to show that

γi(P ) = 〈
γi(P ) ∩ P j

∣∣ 1 � j � t
〉
, (4.4)

for all i � 1.
For i = 1 the equality (4.4) is Theorem 4.1. Assume that i � 2. Set N j = γi(P ) ∩ P j for j = 1, . . . , t

and N = 〈N j | 1 � j � t〉. By Lemma 2.3 [N j, Pk] can be generated by subgroups of the form [N j, Pk]∩
CG(Al), where l = 1, . . . , s and each of them is contained in some Nu for suitable u � t . Indeed, on
the one hand [N j, Pk] ∩ CG(Al) is obviously contained in γi(P ). On the other hand it follows from
Proposition 3.2(1) that [N j, Pk] ∩ CG(Al) is contained in some A-special subgroup H of degree d.
Hence

[N j, Pk] ∩ CG(Al) � γi(P ) ∩ (P ∩ H) = γi(P ) ∩ Pu

for some u � t . So [N j, Pk]∩CG(Al) is contained in some Nu as desired. This implies that [N j, Pk] � N
for all j and k. Therefore N is normal in P .

We can now consider the quotient P/N and observe that for j = 1, . . . , t the image of the subgroup
γi(P ) ∩ P j is trivial. Therefore γi(P ) � N . Since the subgroup N is obviously contained in γi(P ) we
conclude that N = γi(P ) and we have (4.4). �
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We will also require the following result that is a little stronger than Corollary 4.4.

Corollary 4.5. For all l � 1 the lth derived group P (l) is the product of the subgroups of the form P (l) ∩ P j ,
where j = 1, . . . , t.

Proof. Recall that by Lemma 4.3 we have

P (l) = 〈
P (l) ∩ P j

∣∣ 1 � j � t
〉

for all l � 1. By using the same argument as in the proof of Corollary 4.4 the result follows. �
5. Useful Lie-theoretic machinery

Let L be a Lie algebra over a field k. Let k be a positive integer and let x1, x2, . . . , xk be elements
of L. We define inductively

[x1] = x1; [x1, x2, . . . , xk] = [[x1, x2, . . . , xk−1], xk
]
.

An element a ∈ L is called ad-nilpotent if there exists a positive integer n such that

[x,a, . . . ,a︸ ︷︷ ︸
n

] = 0 for all x ∈ L.

If n is the least integer with the above property then we say that a is ad-nilpotent of index n. Let
X ⊆ L be any subset of L. By a commutator in elements of X we mean any element of L that can be
obtained as a Lie product of elements of X with some system of brackets.

Denote by F the free Lie algebra over k on countably many free generators x1, x2, . . . . Let f =
f (x1, x2, . . . , xn) be a non-zero element of F . The algebra L is said to satisfy the identity f ≡ 0 if
f (a1,a2, . . . ,an) = 0 for any a1,a2, . . . ,an ∈ L. In this case we say that L satisfies a polynomial identity,
in short, is PI. A deep result of Zelmanov [23], which has numerous important applications to group
theory (in particular see [15] for examples where the theorem is used), says that if a Lie algebra L is
PI and is generated by finitely many elements all commutators in which are ad-nilpotent, then L is
nilpotent. From Zelmanov’s result the following theorem can be deduced [10].

Theorem 5.1. Let L be a Lie algebra over a field k generated by a1,a2, . . . ,am. Assume that L satisfies an
identity f ≡ 0 and that each commutator in the generators a1,a2, . . . ,am is ad-nilpotent of index at most n.
Then L is nilpotent of { f ,n,m, k}-bounded class.

The next theorem provides an important criterion for a Lie algebra to be PI. It was proved by Bakh-
turin and Zaicev for soluble groups A [1] and later extended by Linchenko to the general case [12].

Theorem 5.2. Assume that a finite group A acts on a Lie algebra L by automorphisms in such a manner that
CL(A), the subalgebra formed by fixed elements, is PI. Assume further that the characteristic of the ground field
of L is either 0 or prime to the order of A. Then L is PI.

We will need a corollary of the previous result.

Corollary 5.3. (See [16].) Let F be the free Lie algebra of countable rank over k. Denote by F ∗ the set of non-zero
elements of F . For any finite group A there exists a mapping

φ : F ∗ → F ∗



C. Acciarri, P. Shumyatsky / Journal of Algebra 342 (2011) 161–174 169
such that if L and A are as in Theorem 5.2, and if CL(A) satisfies an identity f ≡ 0, then L satisfies the identity
φ( f ) ≡ 0.

Now we turn to groups and for the rest of this section p will denote a fixed prime number. Let G
be any group. A series of subgroups

(∗) G = G1 � G2 � · · ·

is called an N p-series if [Gi, G j] � Gi+ j and G p
i � G pi for all i, j. With any N p-series (∗) of G one

can associate a Lie algebra L∗(G) = ⊕
L∗

i over the field with p elements Fp , where we view each
L∗

i = Gi/Gi+1 as a linear space over Fp . If x ∈ G , let i = i(x) be the largest integer such that x ∈ Gi .
We denote by x∗ the element xGi+1 of L∗(G). The following lemma tells us something about the
relationship between the group G and the associated Lie algebra L∗(G).

Lemma 5.4. (See Lazard [11].) For any x ∈ G we have (ad x∗)p = ad(xp)∗ . Consequently, if x is of finite order pt ,
then x∗ is ad-nilpotent of index at most pt .

Let w = w(x1, x2, . . . , xn) be nontrivial group-word, i.e., a nontrivial element of the free group on
free generators x1, x2, . . . , xn . We say that G satisfies the identity w ≡ 1 if w(g1, . . . , gn) = 1 for any
g1, g2, . . . , gn ∈ G . The next proposition follows from the proof of Theorem 1 in the paper of Wilson
and Zelmanov [22].

Proposition 5.5. Let G be a group satisfying an identity w ≡ 1. Then there exists a non-zero multilinear Lie
polynomial f over Fp , depending only on p and w, such that for any N p-series (∗) of G the corresponding
algebra L∗(G) satisfies the identity f ≡ 0.

In general a group G has many N p-series; one of the most important is the so-called Jennings–
Lazard–Zassenhaus series that can be defined as follows.

Let γ j(G) denote the jth term of the lower central series of G . Set Di = Di(G) = ∏
jpk�i γ j(G)pk

.
The subgroup Di is also known as the ith-dimension subgroup of G in characteristic p. These sub-
groups form an N p-series of G known as the Jennings–Lazard–Zassenhaus series. Let Li = Di/Di+1
and L(G) = ⊕

Li . Then L(G) is a Lie algebra over the field Fp (see [2, Chapter 11] for more detail).
The subalgebra of L(G) generated by L1 = D1/D2 will be denoted by L p(G). The next lemma is a
“finite” version of Lazard’s criterion for a pro-p group to be p-adic analytic. The proof can be found
in [10].

Lemma 5.6. Suppose that P is a d-generator finite p-group such that the Lie algebra L p(P ) is nilpotent of
class c. Then P has a powerful characteristic subgroup of {p, c,d}-bounded index.

Remind that powerful p-groups were introduced by Lubotzky and Mann in [13]. A finite p-group
G is said to be powerful if and only if [G, G] � G p for p �= 2 (or [G, G] � G4 for p = 2). These groups
have some nice properties. In particular we will use the following property: if G is a powerful p-group
generated by elements of order e = pk , then the exponent of G is e.

Every subspace (or just an element) of L(G) that is contained in Di/Di+1 for some i will be called
homogeneous. Given a subgroup H of the group G , we denote by L(G, H) the linear span in L(G) of all
homogeneous elements of the form hDi+1, where h ∈ Di ∩ H . Clearly, L(G, H) is always a subalgebra
of L(G). Moreover, it is isomorphic with the Lie algebra associated with H using the N p-series of H
formed by Hi = Di ∩ H . We also set L p(G, H) = L p(G) ∩ L(G, H). The proof of the following lemma
can be found in [4].
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Lemma 5.7. Suppose that any Lie commutator in homogeneous elements x1, . . . , xr of L(G) is ad-nilpotent of
index at most t. Let K = 〈x1, . . . , xr〉 and assume that K � L(G, H) for some subgroup H of G satisfying a
group identity w ≡ 1. Then there exists some {r, t, w, p}-bounded number u such that:

[
L(G), K , . . . , K︸ ︷︷ ︸

u

] = 0.

Lemma 2.2(1) has important implications in the context of associated Lie algebras and their auto-
morphisms. Let G be a group with a coprime automorphism a. Obviously a induces an automorphism
of every quotient Di/Di+1. This action extends to the direct sum

⊕
Di/Di+1. Thus, a can be viewed

as an automorphism of L(G) (or of L p(G)). Set Ci = Di ∩ CG (a). Then Lemma 2.2(1) shows that

CL(G)(a) =
⊕

Ci Di+1/Di+1, (5.1)

and that

CL p(G)(a) = Lp
(
G, CG(a)

)
. (5.2)

This implies that the properties of CL(G)(a) are very much related to those of CG(a). In particular,
Proposition 5.5 shows that if CG(a) satisfies a certain identity, then CL(G)(a) is PI.

6. Proof of the main result

Our goal in this section is to prove that part (2) of Conjecture 1.3 is correct. More precisely we
have the following result.

Theorem 6.1. Let m be a positive integer, q a prime, and A an elementary abelian group of order qr , with r � 2.
Suppose that A acts as a coprime group of automorphisms on a finite group G. If, for some integer d such that
2d � r − 1, the dth derived group of CG (a) has exponent dividing m for any a ∈ A# , then the dth derived group
G(d) has {m,q, r}-bounded exponent.

First we will consider the particular case where G is a powerful p-group.

Lemma 6.2. Theorem 6.1 is valid if G is powerful.

Proof. It follows from [2, Exercise 2.1] that G(d) is also powerful. Furthermore, by Proposition 3.2(3),
G(d) is generated by A-special subgroups of G of degree d. Since 2d � r − 1, Proposition 3.2(4) shows
that any A-special subgroup H of G of degree d is contained in CG(B)(d) for some nontrivial subgroup
B � A and so H is also contained in CG(a)(d) for some a ∈ A#. This implies that G(d) is generated
by elements of order dividing m, and so it follows from [2, Lemma 2.5] that the exponent of G(d)

divides m. �
We will now handle the case of an arbitrary p-group. The Lie-theoretic techniques that we have

described in Section 5 will play a fundamental role in the subsequent arguments.

Lemma 6.3. Theorem 6.1 is valid if G is a p-group.

Proof. Assume that G is a p-group. By Corollary 4.4 we have

G(d) = G1G2 · · · Gt, (6.1)
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where each G j is an A-special subgroup of G of degree d. It is clear that the number t is {q, r}-
bounded.

Let x be any element of G(d) . In view of (6.1) we can write x = x1x2 · · · xt , where each x j belongs
to G j . Since 2d � r − 1, by Proposition 3.2(4) each G j is contained in CG (B)(d) for some subgroup

B � A such that |A/B| � q2d
. Thus each x j is contained in some CG(a)(d) for a suitable a ∈ A#.

Let Y be the subgroup of G generated by the orbits xA
j for j = 1, . . . , t . Each orbit contains at

most qr−1 elements so it follows that Y has at most qr−1t generators, each of order dividing m.
Since x ∈ Y and we wish to bound the order of x, it is enough to show that the exponent of Y is
{m,q, r}-bounded.

Set Y j = G j ∩ Y for j = 1, . . . , t and note that every Y j � CG(a)(d) for a suitable a ∈ A#. Since
Y = 〈xA

1 , . . . , xA
t 〉 and every G j is an A-invariant subgroup we have Y = 〈Y1, . . . , Yt〉. By applying

Lemma 2.1 we see that Y = Y1Y2 · · · Yt .
Let L = L p(Y ) and let V 1, . . . , Vt be the images of Y1, . . . , Yt in Y /Φ(Y ). It follows that the Lie

algebra L is generated by V 1, . . . , Vt .
Let W be a subspace of L. We say that W is a special subspace of weight 1 of L if and only if W =

V j for some j � t and say that W is a special subspace of weight ϕ � 2 if W = [W1, W2] ∩ CL(Ak),
where W1, W2 are some special subspaces of L of weight ϕ1 and ϕ2 such that ϕ1 + ϕ2 = ϕ and Ak
is some maximal subgroup of A for a suitable k.

We wish to show that every special subspace W of L corresponds to a subgroup of an A-special
subgroup of G of degree d. We argue by induction on the weight ϕ . If ϕ = 1, then W = V j and
so W corresponds to Y j for some j � t . Assume that ϕ � 2 and write W = [W1, W2] ∩ CL(Ak).
By induction we know that W1, W2 correspond respectively to some J1, J2 which are subgroups of
some A-special subgroups of G degree d. Note that [W1, W2] is contained in the image of [ J1, J2].
This implies that the special subspace W corresponds to a subgroup of [ J1, J2] ∩ CG(Ak) which, by
Proposition 3.2(1), is contained in some A-special subgroup of G of degree d, as desired. Moreover it
follows from Proposition 3.2(4) that every element of W corresponds to some element of CG(a)(d) for
some a ∈ A# and so, by Lemma 5.4, it is ad-nilpotent of index at most m.

From the previous argument we deduce that L = 〈V 1, . . . , Vt〉 is generated by ad-nilpotent ele-
ments of index at most m but we cannot claim that every Lie commutator in these generators is
again in some special subspace of L and hence it is ad-nilpotent of bounded index. To overcome this
difficulty we extend the ground field Fp by a primitive qth root of unity ω and put L = L ⊗Fp[ω]. We
view L as a Lie algebra over Fp[ω] and it is natural to identify L with the Fp-subalgebra L ⊗ 1 of L.
In what follows we write X to denote X ⊗ Fp[ω] for some subspace X of L. Note that if an element
x ∈ L is ad-nilpotent, then the “same” element x ⊗ 1 is also ad-nilpotent in L. We will say that an
element of L is homogeneous if it belongs to S for some homogeneous subspace S of L.

Let W be a special subspace of L. We claim that

there exists an {m,q}-bounded number u such that every

element w of W is ad-nilpotent of index at most u. (6.2)

Since w is a homogeneous element of L it can be written as

w = l0 ⊗ 1 + l1 ⊗ ω + · · · + lq−2 ⊗ ωq−2,

for suitable homogeneous elements l0, . . . , lq−2 of W . The elements l0, . . . , lq−2 correspond to some
x0, . . . , xq−2 of Y that belong to some A-special subgroup of degree d and so in particular x0, . . . , xq−2

are elements of CG(a)(d) for some a ∈ A#. Set H = 〈x0, . . . , xq−2〉 and K = 〈l0, . . . , lq−2〉. Since H has
exponent m and K � L p(Y , H), Lemma 5.7 shows that there exists an {m,q}-bounded number u such
that

[L, K , . . . , K︸ ︷︷ ︸] = 0. (6.3)
u
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Obviously (6.3) implies that

[L, K , . . . , K︸ ︷︷ ︸
u

] = 0. (6.4)

Since w lies in K , (6.2) follows.
The group A acts naturally on L and now the ground field is a splitting field for A. Since Y

can be generated by at most qr−1t elements, we can choose elements v1, . . . , vs in V 1 ∪ · · · ∪ Vt

with s � qr−1t that generate the Lie algebra L and each of them is a common eigenvector for all
transformations from A.

Now let v be any Lie commutator in v1, . . . , vs . We wish to show that v belongs to some W ,
where W is a special subspace of L. If v has weight 1 there is nothing to prove. Assume v has weight
at least 2. Write v = [w1, w2] for some w1 ∈ W1 and w2 ∈ W2, where W1, W2 are two special
subspaces of L of smaller weights. It is clear that v belongs to [W1, W2]. Note that any commutator
in common eigenvectors is again a common eigenvector. Therefore v is a common eigenvector and it
follows that there exists some maximal subgroup Al of A such that v ∈ CL(Al). Thus v ∈ [W1, W2] ∩
CL(Al). Hence v lies in W , where W is the special subspace of L of the form [W1, W2] ∩ CL(Al) and
so by (6.2) v is ad-nilpotent of bounded index. This proves that

any commutator in v1, . . . , vs is ad-nilpotent of index at most u. (6.5)

Remind that CL(a) = L p(Y , CY (a)). Proposition 5.5 shows that CL(a) satisfies a multilinear poly-
nomial identity of {m,q}-bounded degree. This also holds in CL(a) = CL(a). Therefore Corollary 5.3
implies that L satisfies a polynomial identity of {m,q}-bounded degree. Combining this with (6.2) and
(6.5) we are now able to apply Theorem 5.1. Thus L is nilpotent of {m,q, r}-bounded class and the
same holds for L.

Since Y is a p-group and L = L p(Y ) is nilpotent of bounded class, it follows from Lemma 5.6
that Y has a characteristic powerful subgroup K of {m,q, r}-bounded index. By Lemma 6.2 K (d) has
bounded exponent and so we can pass to the quotient Y /K (d) and assume that Y is of {m,q, r}-
bounded derived length. We now recall that Y = Y1Y2 . . . Yt and each Y j is contained is some G j .
From the results obtained in Section 4 also each derived group Y (i) is a product of subgroups of the
form Y (i) ∩Y j . Thus every Y (i) can be generated by elements whose orders divide m. Since the derived
length of Y is bounded, we conclude that Y has {m,q, r}-bounded exponent, as required. �

Finally we are ready to complete the proof of Theorem 6.1.

Proof of Theorem 6.1. Note that it suffices to prove that there is a bound, depending only on m,q
and r, on the exponent of a Sylow p-subgroup of G(d) for each prime p.

Indeed, let π(G(d)) be the set of prime divisors of |G(d)|. Choose p ∈ π(G(d)). It follows from
Lemma 2.2(2) that G(d) possesses an A-invariant Sylow p-subgroup, say P . By Corollary 4.4, P =
P1 P2 · · · Pt , where each P j is of the form P ∩ H for some A-special subgroup H of G of degree d.
Combining this fact with Proposition 3.2(4) we see that each P j is contained in CG(B)(d) for a suitable
subgroup B of A and thus P j � CG(a)(d) , for some a ∈ A#. Since the exponent of CG(a)(d) divides m,
so does p.

From Lemma 6.3 we know that P (d) has {m,q, r}-bounded exponent. Moreover by Lemma 4.3 the
subgroup P (d−1) is generated by subgroups of the form P (d−1) ∩ P j , for j = 1, . . . , t , so in particular
P (d−1) is generated by elements of order dividing m. Since P (d) = (P (d−1))′ has bounded exponent
it is clear that also the exponent of P (d−1) is {m,q, r}-bounded. Repeating the same argument sev-
eral times we see that all subgroups P (d−2), . . . , P ′ and P are generated by elements whose orders
divide m and so we conclude that P has {m,q, r}-bounded exponent, as desired. This completes the
proof. �
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7. The other part of the conjecture

In this last section we will deal with part (1) of Conjecture 1.3. The proof of that part is similar
to that of part (2) but in fact it is easier. Therefore we will not give a detailed proof here but rather
describe only steps where the proof of part (1) is somewhat different from that of part (2).

The definition of A-special subgroups of G needs to be modified in the following way.

Definition 7.1. Let A be an elementary abelian q-group acting on a finite q′-group G . Let A1, . . . , As
be the subgroups of index q in A and H a subgroup of G .

• We say that H is a γ -A-special subgroup of G of degree 1 if and only if H = CG(Ai) for suitable
i � s.

• Suppose that k � 2 and the γ -A-special subgroups of G of degree k − 1 are defined. Then H is a
γ -A-special subgroup of G of degree k if and only if there exists a γ -A-special subgroup J of G
of degree k − 1 such that H = [ J , CG(Ai)] ∩ CG(A j) for suitable i, j � s.

The next proposition is similar to Proposition 3.2.

Proposition 7.2. Let A be an elementary abelian q-group of order qr with r � 2 acting on a finite q′-group G
and A1, . . . , As the maximal subgroups of A. Let k � 1 be an integer.

(1) If k � 2, then every γ -A-special subgroup of G of degree k is contained in some γ -A-special subgroup
of G of degree k − 1.

(2) Let Rk be the subgroup generated by all γ -A-special subgroups of G of degree k. Then Rk = γk(G).
(3) If k � r − 1 and H is a γ -A-special subgroup of G of degree k, then H � γk(CG(B)) for some subgroup

B � A such that |A/B| � qk.
(4) Suppose that G = G ′ and let N be an A-invariant subgroup such that N = [N, G]. Then for every k � 1 the

subgroup N is generated by subgroups of the form N ∩ H, where H is some γ -A-special subgroup of G of
degree k.

(5) Let H be a γ -A-special subgroup of G. If N is an A-invariant normal subgroup of G, then the image of H
in G/N is a γ -A-special subgroup of G/N.

The above properties of γ -A-special subgroups are essential in the proof of the following genera-
tion result, which is analogous to Theorem 4.1.

Theorem 7.3. Assume r � 2. Let P be an A-invariant Sylow p-subgroup of γr−1(G). Let P1, . . . , Pt be all
the subgroups of the form P ∩ H where H is some γ -A-special subgroup of G of degree r − 1. Then P =
〈P1, . . . , Pt〉.

From this one can deduce

Theorem 7.4. Let m be a positive integer, q a prime and A an elementary abelian group of order qr with
r � 2 acting on a finite q′-group G. If γr−1(CG(a)) has exponent dividing m for any a ∈ A# , then γr−1(G) has
{m,q, r}-bounded exponent.

The above theorem shows that part (1) of Conjecture 1.3 is correct. The proof of Theorem 7.4 can
be obtained in the same way as that of Theorem 6.1 with only obvious changes required. Thus, we
omit the further details.
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